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ABSTRACT

SubX is a multi-model subseasonal prediction experiment with both re-

search and real-time components. Seven global models have produced sev-

enteen years of retrospective (re-) forecasts and one year of weekly real-time

forecasts. Both the re-forecasts and forecasts are archived at the Data Library

of the International Research Institute for Climate and Society, Columbia

University, for research on subseasonal to seasonal predictability and predic-

tions. The real-time forecasts started in July 2017 to provide guidance to

the week 3-4 outlooks issued by the Climate Prediction Center at the NOAA

National Centers for Environmental Prediction. Evaluation of SubX model

biases demonstrates that model bias patterns are already established at week

1 and grow to week 4. Temperature and precipitation skill over the U.S. exists

for week 3-4 predictions for specific regions and seasons. The SubX multi-

model ensemble is more skillful than any individual model overall. Skill in

simulating the Madden-Julian Oscillation and the North Atlantic Oscillation

is also evaluated and found to be comparable to other subseasonal modeling

systems. SubX is also able to make useful contributions to operational fore-

cast guidance at the Climate Prediction Center.
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1. Introduction83

A well-known “gap” exists in our current prediction systems at the subseasonal (2-weeks to84

several months) timescale, as the memory of the atmospheric initial conditions is increasingly lost,85

while information in the slowly-evolving surface boundary conditions has had insufficient time to86

be felt (National Research Council (2010); Brunet et al. (2010); National Academies of Sciences,87

Engineering and Medicine (2017); Mariotti et al. (2018); Black et al. (2017)). Although there is88

evidence that predictability exists at this timescale in some regions and seasons (e.g. Pegion and89

Sardeshmukh (2011); DelSole et al. (2017); Li and Roberston (2015)), it is not clear whether the90

full potential of prediction skill has been realized. Additionally, many questions remain regarding91

our fundamental understanding of the physical processes giving rise to predictability, as well as92

how best to design, build, post-process, and verify a subseasonal prediction system.93

Until recently, it has been difficult to assess the skill of subseasonal predictions. Re-forecast94

databases consisted of monthly or seasonal predictions that were not initialized frequently enough95

to capture the full range of subseasonal variability (e.g., NMME, DEMETER, CHFP, ENSEM-96

BLES, APCC/CliPAS) (Kirtman et al. (2014); Palmer et al. (2004); Tompkins et al. (2017);97

Weisheimer and Reyes (2009); Wang et al. (2008)) or weather predictions that did not extend98

to long enough lead-times for subseasonal predictions (e.g. TIGGE, GEFS 2nd generation re-99

forecasts) (Swinbank et al. (2016); Hamill et al. (2013)). Initial efforts to produce subseasonal100

re-forecasts and evaluate skill focused primarily on the Madden-Julian Oscillation (MJO) and bo-101

real summer intraseasonal oscillation (e.g., ISVHE, Neena et al. (2014) and NCEP-CFSv2 45-day102

re-forecasts, Saha et al. (2014); Wang et al. (2013)).103

More recently, a focused community effort has developed to facilitate research on a broad range104

of subseasonal predictions and to understand current and potential capabilities for improving sub-105
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seasonal skill. The World Weather Research Programme (WWRP)/World Climate Research Pro-106

gram (WCRP) Subseasonal to Seasonal (S2S) Prediction Project is an international project bring-107

ing together the weather and climate prediction communities to improve physical understanding108

and forecast skill for the S2S timescale (Robertson et al. (2015); Vitart et al. (2017)). A major109

contribution of this project is the development of a S2S forecast database consisting of operational110

forecasts (3 weeks behind real time), and re-forecasts, from 11 international global producing cen-111

ters of long-range forecasts for S2S research purposes (Vitart et al. 2017). SubX contributes to112

the community S2S effort by providing a publicly available database of forecasts and re-forecasts.113

A unique contribution of SubX is that the real-time forecasts are made available without delay114

to support potential use in real-time applications. Additionally, the NOAA/Climate Program Of-115

fice, Modeling Analysis and Predictions Program has developed an S2S Prediction Task Force116

consisting of researchers using the WWRP/WCRP S2S and SubX databases for research on sub-117

seasonal prediction and predictability (Mariotti et al. (2018) and Mariotti et al. (2018), manuscript118

submitted to EOS).119

There is ever-increasing demand for predictions on these timescales, specifically predictions120

relevant for risk reduction and disaster preparedness, public health, energy, water management,121

agriculture, and marine fisheries (see White et al. (2017) for a review of S2S applications). In122

the U.S., the NOAA National Centers for Environmental Prediction (NCEP) Climate Prediction123

Center (CPC) was mandated to begin issuing week 3-4 outlooks for temperature and precipitation.124

Given that there are immediate needs for understanding predictability and making skillful oper-125

ational predictions on these timescales, a research-to-operations (R2O) project provides the ideal126

testbed for quick progress in making subseasonal predictions while continuing research efforts that127

can lead to increased subseasonal prediction skill in the future.128
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SubX was launched to provide such a testbed. It follows in the footsteps of the North American129

Multi-model Ensemble (NMME), a R2O project focused on monthly and seasonal (1-month to 1-130

year) predictions (Kirtman et al. 2014). NMME contains a publicly available research archive of 36131

years of re-forecast and forecast data, and has been providing real-time seasonal forecast guidance132

since 2011. Similarly, SubX brings together seven global models, following a specific protocol133

to make both re-forecasts and real-time forecasts on the subseasonal timescale. The collection of134

models consists of U.S. and Canadian operational models as well as research models. The inclu-135

sion of research models, another unique contribution of SubX, allows research groups to approach136

model improvements from a practical prediction perspective and to test those improvements in a137

real-time prediction framework. Given the timescale of interest, some models originate from the138

numerical weather prediction (NWP) community while others come from the seasonal prediction139

community, bringing together critical expertise from both communities to make progress on sub-140

seasonal prediction. The re-forecast and real-time forecast data are made publicly available to141

facilitate broad research and applications community use. Additionally, SubX forecasts are being142

provided each week to NCEP/CPC, and multi-model ensemble (MME) guidance is produced in143

support of their week 3-4 outlooks.144

The purpose of this paper is to describe SubX, the available data (Section 2) and the evaluation145

of model biases and skill for operationally relevant variables (Section 3c,d). We also provide skill146

evaluation for some known sources of subseasonal predictability (Section 3e) and a description of147

how SubX contributes to the official NCEP/CPC week 3-4 outlooks (Section 4).148
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2. Protocol and Database149

Each of the modeling groups participating in SubX agreed to follow a specific re-forecast and150

real-time forecast protocol. Given the demanding requirements of both re-forecasts and real-time151

forecasts, the protocol itself represents a compromise between the traditional operating modes of152

the NWP and seasonal prediction communities. For example, NWP groups are accustomed to run-153

ning in real-time with frequent initializations, but producing shorter period re-forecast databases154

and only recently extending model runs to subseasonal timescales. In contrast, the seasonal pre-155

diction community typically produces large re-forecast datasets and extended range predictions,156

but not with weekly initializations.157

While each modeling group was allowed to determine the details of their individual prediction158

system, (e.g., initialization, resolution, earth-system components, etc.), the SubX protocol required159

that each group adhere to a rigid scope of retrospective and real-time forecasts. The groups agreed160

to produce 17 years of re-forecasts out to a minimum of 32 days for the years 1999-2015. Initial-161

ization was required at least weekly, and a minimum of three ensemble members were required,162

although more were encouraged. Since the land-surface (e.g. soil moisture) is an important source163

of subseasonal predictability (Koster et al. (2010);Koster et al. (2011)), all models were required164

to include a land surface model and initialize both the atmosphere and land. The SubX project165

has also performed one year of real-time forecasts. During this demonstration period, forecasts166

were required to be made available to NCEP/CPC by 6pm every Wednesday. This requirement167

was relaxed to 6am Thursday partway through the real-time demonstration period. All data were168

provided on a uniform 1◦x1◦ longitude-latitude grid as full fields to both NCEP/CPC for their in-169
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ternal use and the International Research Institute for Climate and Society Data Library (IRIDL)170

for public dissemination1 (Kirtman et al. 2017).171

a. Models172

Seven modeling groups participate in SubX, these are:173

• National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2174

(NCEP-CFSv2);175

• NCEP Environmental Modeling Center, Global Ensemble Forecast System (EMC-GEFS);176

• Environmental and Climate Change Canada Global Ensemble Prediction System, Global En-177

vironmental Multi-scale Model (ECCC-GEM);178

• National Aeronautics and Space Administration, Global Modeling and Assimilation Office,179

Goddard Earth Observing System, version 5 (GMAO-GEOS5);180

• Naval Research Laboratory, Navy Earth System Model (NRL-NESM);181

• National Center for Atmospheric Research Community Climate System Model, version 4 run182

at the University of Miami Rosenstiel School for Marine and Atmospheric Science (RSMAS-183

CCSM4);184

• National Oceanic and Atmospheric Administration, Earth System Research Laboratory,185

Flow-Following Icosahedral Model (ESRL-FIM).186

For additional details, see Table 1.187

1http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
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All groups have provided re-forecasts for the 1999-2015 period with the exception of ECCC-188

GEM (1999-2014)2 and most have provided additional re-forecasts to fill the gap between the end189

of the SubX re-forecast period and beginning of the real-time forecasts in July 2017. Five of the190

groups use fully coupled atmosphere-ocean-land-sea ice models (NCEP-CFSv2, GMAO-GEOS5,191

NRL-NESM, RSMAS-CCSM4, ESRL-FIM), while two groups use models with atmosphere and192

land components forced with prescribed sea surface temperatures (EMC-GEFS, ECCC-GEM).193

In the EMC-GEFS forecast system, SSTs are specified by relaxing the SST analysis to a com-194

bination of climatological SST and bias-corrected SST from operational NCEP-CFSv2 forecasts.195

The longer the lead time, the more weighting given to the bias-corrected NCEP-CFSv2 forecast196

SST. In the ECCC-GEM forecast system, the SST anomaly averaged from the previous 30 days197

is persisted in the forecast. The sea-ice cover is adjusted in order to be consistent with the SST198

change. Most groups provide 4 ensemble members for the re-forecasts (NCEP-CFSv2, ECCC-199

GEM, GMAO-GEOS5, NRL-NESM, ESRL-FIM) with some groups using lagged ensembles and200

others using their own ensemble generation systems to produce initial conditions. Some groups201

provide additional ensemble members in real-time (e.g. RSMAS-CCSM4, EMC-GEFS).202

b. Description of Datasets203

There is a demand for many S2S-relevant variables from the research community for evaluating204

a range of S2S phenomena. This demand together with daily output frequency, weekly initial205

conditions, seven models, and three or more ensemble members places extremely high demands206

on the data server, therefore a priority for fields to be distributed was defined. Ten fields were207

identified as critical to supporting NCEP/CPC operational products and were designated as Priority208

1 variables. These variables include, geopotential height at 200 and 500 hPa, zonal and meridional209

2ECCC-GEM runs their re-forecasts on the fly as part of their operational practice and will fill in 2015 at a later date
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winds at 200 and 850 hPa, temperature at 2m, precipitation, surface temperature (SST + Land),210

and outgoing longwave radiation (see Table 2). This paper will focus on evaluation of the models211

using these Priority 1 variables. A second set of 21 additional fields have been identified as key212

variables for supporting S2S research, labelled Priority 2 variables (see Table 3). Both priority 1213

and 2 variables are publicly available through the IRIDL.214

3. Re-forecast Evaluation215

a. Verification Datasets216

Calculation of skill requires a verifying observational dataset. Where applicable, the datasets217

used correspond to those used by NCEP/CPC for verification of their forecasts. For 2m tem-218

perature over land, the CPC daily temperature dataset with horizontal resolution of 0.5◦x0.5◦ is219

used3. This data is provided as a maximum and minimum daily temperature, thus the average220

daily temperature is calculated as the average of Tmax and Tmin (Fan and Van Den Dool 2008).221

For precipitation over land, the CPC Global Daily Precipitation dataset (0.5◦x0.5◦) is used (Xie222

et al. (2007); Chen et al. (2008)). Verification datasets are re-gridded to the coarser SubX model223

resolution of 1◦ x 1◦ prior to performing model evaluation.224

We also evaluate the skill of two subseasonal phenomena that are known sources of S2S pre-225

dictability - the Madden-Julian Oscillation (MJO) and the North Atlantic Oscillation (NAO). The226

MJO skill is evaluated using the real-time multivariate MJO index (RMM) (Wheeler and Hendon227

2004). The observed index is calculated using the NCEP/NCAR Reanalysis (Kalnay et al. 1996)228

and NOAA Interpolated OLR (Liebmann and Smith 1996). The observed NAO index is calculated229

using 500 hPa geopotential height from NCEP/NCAR Reanalysis (Kalnay et al. 1996).230

3The original data can be found at ftp://ftp.cpc.ncep.noaa.gov/precip/PEOPLE/wd52ws/global temp/
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b. Multi-model Ensemble231

Since the SubX models are initialized on different days, it is challenging to produce a MME232

(e.g. Vitart (2017)). In SubX, we choose to align the target dates of each model to produce a233

MME. Following nearly the same procedure used for NCEP/CPC real-time forecasts, Saturday is234

defined as the first day of a given week. All re-forecasts for all models that are produced during the235

prior week (previous Saturday through Thursday) are used to produce a MME forecast for weeks236

1-4 individually, where week 1 is defined as the first Sat-Fri interval. Friday initializations are not237

included in an attempt to mimic real-time forecast procedures. In real-time, forecasts provided238

after Thurs 6am cannot be processed in time to be used by the forecasters. This procedure, which239

also involves forming averages of daily forecasts over the appropriate week, is repeated for weeks240

2 through 4. Weeks 3 and 4 are then averaged together to produce week 3-4 forecasts. Using this241

procedure, a multi-model ensemble re-forecast, equally weighted by model can be produced by242

averaging the ensemble means of each of the models for their week 3-4 forecasts. We choose to243

equally weight by model when evaluating the re-forecasts in order to understand the contribution244

of each model to the MME. There are some potential drawbacks to the MME procedure. For245

example, some models will contribute older forecasts to the MME than others, depending on246

their initialization date. The extent to which decreased skill with longer lead time is balanced247

by increased ensemble size and model diversity in such an ensemble remains an open research248

question. Additionally, since the period over which forecasts are obtained is Sat-Thurs (a 6-day249

period, used to mimic the 6-day period of real-time forecast initializations described in Section250

4) and some of the models initialize once every 7 days, there are times when a model will not be251

included in the MME, depending on how the re-forecast dates fall. For example, this occurs with252

the ECCC-GEM model in approximately 13% of the weekly forecasts. Finally, in rare cases, it is253
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not possible to produce a week 3-4 forecast for the ECCC-GEM model since part of week 4 is not254

available due to the re-forecast initialization day and 32-day re-forecast length.255

c. Model Biases256

A forecast is typically initialized with an analysis in which observations have been assimilated,257

thereby constraining the analysis to represent the observed state as close as possible. As the258

forecast time increases, the model state on average moves from the observed climate towards259

a model-intrinsic climate, which is typically biased. Therefore, it is common practice in S2S260

predictions to estimate and remove the mean forecast bias using a set of re-forecasts (Smith et al.261

1999). Additionally, the skill of forecasts at the S2S timescale is typically evaluated in terms262

of anomalies or differences from the mean climate, thus requiring a climatology based on re-263

forecasts. Both of these needs are met by determining the mean climate (i.e. climatology) as a264

function of lead time and initialization date. For seasonal predictions using monthly data, it is265

typical to calculate the model climatology as a multi-year average for each forecast start month266

and lead or target time (Tippett et al. 2018). However, calculation of the climatology is not trivial267

for subseasonal re-forecasts due to differences in initialization day and frequency among models.268

For example, some forecast models are initialized on the same Julian days every year while others269

are initialized on a day-of-the-week schedule, meaning that the Julian initialization dates shift270

from year to year. In the first case, the 17-year re-forecast period yields 17 model runs on some271

calendar dates and none on the rest. In the second case, only 2-3 model runs are available for each272

day of the year from which to determine the climatology. An additional challenge for the SubX273

project was that a climatology was needed to produce bias-corrected forecast anomalies in real-274

time for NCEP/CPC prior to the completion of the re-forecasts at some centers. The methodology275
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described here was developed by the SubX Team to resolve these issues and is used for producing276

SubX real-time forecasts and model evaluation.277

To compute the climatology, the first step is to calculate ensemble means for individual days of278

each forecast run. For most groups, lagged ensembles are produced using initialization dates from279

different hours of the same initialization day; these are averaged to yield ensemble means for the280

24-h period spanning each forecast day. In the case of the NRL-NESM, which produces ensemble281

means over runs started on four consecutive days because ocean data assimilation is based on a282

24-hour data cycle, the ensemble mean consists of a single member for each day. Next, for each283

day of the year (1-366), a multi-year average of the ensemble means is calculated. Depending284

on how model runs are scheduled, this may not produce a climatology for each day of the year285

for some models. Finally, a triangular smoothing window of 31 days (+/- 15 days) is applied in286

a periodic fashion such that December smoothing includes January values and vice versa. This287

approach means that the forecast climatology can be computed from a partial re-forecast database288

and only re-forecasts with nearby initializations are required. Due to drift from the initial quasi-289

observed state to the models own internal mean state, the climatology for a given calendar day is290

expected to be different for different lead times. Therefore, the above procedure is performed for291

each lead time and each model individually. Removal of this climatology from the corresponding292

full fields produces anomalies and effectively performs a mean bias correction (Becker et al. 2014).293

Climatologies for the Priority 1 variables have been computed following this procedure and are294

available from the IRIDL.295

Comparison of the model climatology with the observed climatology allows us to evaluate the296

model mean biases and their evolution at subseasonal timescales. While mean biases have been297

evaluated extensively at the monthly and seasonal timescales (e.g. Jin et al. (2008); Saha et al.298
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(2014)), they have not been comprehensively evaluated in models at the subseasonal timescale,299

except in the context of the MJO (e.g. Agudelo et al. (2008); Hannah et al. (2015); Kim (2017);300

Lim et al. (2018)). Two exceptions are Sun et al. (2018a) and Guan et al. (2018, manuscript301

submitted to WAF). These studies evaluate the mean biases in the ESRL-FIM and EMC-GEFS302

re-forecasts used in SubX, respectively. Evaluations of model biases are particularly important303

since there is evidence that model prediction errors are related to model mean bias errors (e.g. Lee304

et al. (2010); DelSole and Shukla (2010); Green et al. (2017)). The extent to which this is the305

case at subseasonal timescales is unknown. To evaluate the overall biases in the SubX system the306

average mean bias over all seven SubX models for week 1 (days 1-7) and week 4 (days 22-28)307

are calculated as model climatology minus observed climatology for 2m Temperature (Figure 1)308

and Precipitation (Figure 2), similar to Sun et al. (2018a). Observed climatology is calculated309

using the same methodology described above for the models with the verification datasets used310

by NCEP/CPC for temperature and precipitation (Section 3a). Model biases are already well311

established in both temperature and precipitation at week 1. On average, warm biases are evident312

in the central U.S. with the strongest biases >1.5◦C during Jun-Jul-Aug. These warm biases are313

reduced by week 4 for re-forecasts initialized in Dec-Jan-Feb (DJF) and Sep-Oct-Nov (SON), but314

are increased for those initialized in Mar-Apr-May (MAM) and Jun-Jul-Aug (JJA). In DJF, cold315

biases are also present which increase to week 4, while re-forecasts initialized in SON show small316

changes from week 1 to week 4. For precipitation, a summer dry bias is evident in the central U.S.317

at week 1, which grows slightly to week 4. While model biases generally grow in amplitude from318

week 1 through week 4, increases in biases with lead days are smaller at longer leads and may be319

approaching saturation near the end of week 4. Overall, the SubX mean bias has a larger seasonal320

cycle than observed. The average bias over all models is generally smaller than any individual321

model biases in both temperature and precipitation (not shown).322
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d. Global and North America Skill Assessment323

In this section, we evaluate the skill for the individual and multi-model combination of the324

SubX models using both deterministic and probabilistic skill measures. The skill assessment is325

performed for temperature and precipitation over land for global and North America domains.326

In most cases, the MME outperforms any individual model, one of the benefits of using a MME327

(Hagedorn et al. (2005); Weigel et al. (2008); Weisheimer and Reyes (2009); Kirtman et al. (2014);328

Becker et al. (2014); Becker and Van Den Dool (2016)).329

1) DETERMINISTIC SKILL330

The deterministic skill of SubX re-forecasts is evaluated using the anomaly correlation (ACC)331

and root mean square error (RMSE). For temperature and precipitation, the results using both332

metrics are similar, therefore only the ACC is shown here. The ACC is calculated using the333

ensemble mean for each model.334

Since the subseasonal timescale begins at week 2, we start by evaluating the Dec-Jan-Feb (DJF)335

initialized re-forecasts with the ACC of global temperature and precipitation for week 2 (Figure336

3). Most regions of the globe have ACC > 0.5 for 2m temperature at 2-weeks. For precipitation,337

there are substantially large regions with ACC >0.5, including the western U.S., east Asia, and338

Brazil.339

Next, we evaluate week 3-4 skill over North America, the region and timescale relevant to340

NCEP/CPC outlooks. The week 3-4 MME ACC over North America is shown in Figure 4 for341

2m Temperature and Figure 5 for precipitation for re-forecasts initialized over four seasons. Con-342

sistent with previous studies, winter skill is higher than summer skill for both temperature and343

precipitation (e.g. DelSole et al. (2017)). Temperature skill is positive for all seasons with regions344
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of ACC >0.2 over most of North America with the exception of a few high latitude locations.345

Additionally, regions of skill >0.4 are also evident in each season. As expected, precipitation skill346

is lower than temperature, but there are substantial regions in each season for which the MME347

ACC >0.2. Figure 6 provides a comparison of the average ACC over North America for week 3-4348

for the individual models and the SubX MME. It is clear that although overall skill is low due to349

aggregation of low and high skill grid points, the MME exceeds the skill of any individual model350

in all seasons. It is also noted that there is no clear stratification in skill by model configuration351

(e.g. number of ensemble members, coupled vs. uncoupled, operational vs. research).352

2) PROBABILISTIC SKILL353

The SubX models are also evaluated using probabilistic skill scores, specifically, the ranked354

probability skill score (RPSS), for tercile categories of above, near, and below normal. Due to the355

small ensemble size of individual models, RPSS is calculated only for the full multi-model en-356

semble (typically 34 members). Figures 7 and 8 show the RPSS for week 3-4 North American 2m357

temperature and precipitation. Positive RPSS indicates skill better than a forecast of climatology,358

therefore any region with positive RPSS can be considered skillful. There are substantial regions359

and seasons of skill better than climatology for 2m temperature (Figure 7). For precipitation, skill360

is evident in spring and fall in the western and central U.S. (Figure 8).361

e. Sources of Subseasonal Predictability362

A number of potential sources of predictability have been identified for the subseasonal363

timescales (National Research Council (2010); National Academies of Sciences, Engineering and364

Medicine (2017)). Correctly simulating the relevant processes and predicting their impacts is the365
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key to successful subseasonal prediction; they should therefore be fully explored in subseasonal366

re-forecast databases. The available Priority 1 variables (Section 2b and Table 2) allow us to367

evaluate the skill of two of these predictability sources in the SubX models: the MJO and NAO.368

1) THE MADDEN-JULIAN OSCILLATION369

The Madden-Julian Oscillation is the largest source of tropical variability on the subseasonal370

timescale. The MJO affects temperature and precipitation in the extratropics through various371

mechanisms, including the NAO (Cassou (2008); Lin et al. (2009)) and atmospheric rivers (e.g.372

Guan et al. (2012); Mundhenk et al. (2018)), among others (Zhang (2013); see Stan et al. (2017)373

for a review of MJO teleconnections). Given its impact, prediction of the MJO is considered a key374

component of a skillful subseasonal prediction system. Therefore, we evaluate its skill in SubX in375

terms of the bivariate ACC and RMSE for ensemble mean re-forecasts initialized Nov-Mar (Fig-376

ure 9) (Rashid et al. (2010)). The skill of each model and the MME are calculated weekly and377

for weeks 3-4 combined, following the SubX MME ensemble methodology (Section 3b). Most378

SubX models have ACC >0.5 and RMSE < 1.4 out to week 3-4. This range of prediction skill379

is similar to the MJO skill of the WWRP/WCRP S2S models, with the exception of the ECMWF380

model which far exceeds the skill of any other S2S or SubX model (Vitart 2017). It is of interest381

that the two most skillful models have very different configurations. The GMAO-GEOS5 model382

is a fully coupled atmosphere-ocean-land-sea ice model that has contributed to the monthly and383

seasonal NMME. GMAO-GEOS5 contributes only 4 ensemble members in SubX. In contrast, the384

base model of EMC-GEFS (i.e. Global Forecast System) is a NWP atmosphere-land model forced385

with prescribed SST that takes into account the day-to-day SST variability from the bias-corrected386

operational NCEP-CFSv2 forecast and contributes 11 ensemble members to the SubX re-forecasts.387

In addition to the configuration of the single model, the ensemble generation approach has been388
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found to be important for the MJO skill in ensemble forecasts (Neena et al. (2014); Vitart (2017);389

Li and Roberston (2015)). The MME is more skillful than any individual model in both metrics.390

2) THE NORTH ATLANTIC OSCILLATION391

One of the key sources of extratropical subseasonal variability is the NAO, which has been392

linked to periods of extreme winter weather on subseasonal timescales in Eastern North America393

and Europe (e.g Hurrell et al. (2010)). Until recently, there was little evidence that the NAO could394

be skillfully predicted beyond weather timescales (e.g. Johansson (2007); Kim et al. (2012)); how-395

ever, recent studies have found that the United Kingdom Met Office (UKMET) seasonal prediction396

system can produce skillful monthly predictions of the NAO up to 1-year due to high resolution397

in both the atmosphere (0.83◦ longitude by 0.55◦ latitude) and ocean (0.25◦ longitude-latitude)398

models, large-ensembles (>20 members), and long re-forecast periods (∼ 40 years) (Scaife et al.399

(2014); Dunstone et al. (2016)). Given this newly found predictability of the NAO and its poten-400

tial impacts on extreme weather at S2S timescales, we evaluate the skill of the NAO in the SubX401

models. Figure 10 shows the ensemble mean anomaly correlation (left) and RMSE (right) of the402

SubX models forecasting the NAO index averaged for weeks 1-4 individually and for weeks 3-4403

combined using initialization dates during the northern hemisphere winter (Dec-Jan-Feb). For this404

analysis, the NAO is defined as the projection of the winter geopotential height at 500 hPa (Z500)405

onto the leading North Atlantic EOF spatial pattern of Z500 (0◦-90◦N, 93◦W-47◦E). The skill of406

each model and the MME are calculated following the SubX MME ensemble methodology (Sec-407

tion 3b). The most skillful models and the MME have ACC > 0.5 and RMSE < 1.4 to week 2.408

The MME has similar skill to the most skillful models in both metrics. However, the week 3-4 skill409

of the 34-member SubX MME is not as skillful as the monthly correlations found in the UKMET410

seasonal prediction system (Scaife et al. 2014).411
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4. Real-time Forecasts412

SubX produces real-time forecasts each week and provides them to NCEP/CPC as dynamical413

guidance for their official week 3-4 temperature outlook and experimental week 3-4 precipitation414

outlook. These outlooks show regions of increased probability of above-normal or below-normal415

(i.e. two category) temperature and precipitation, and regions where the probabilities of above or416

below normal are equal (i.e. 50/50 chance of above or below normal). To illustrate, the official417

week 3-4 temperature and precipitation outlook produced on 6 July 2018 is shown in Figure 10.418

Recall that we evaluated the probabilistic skill of 3-category re-forecasts in Section 3. Ideally, we419

would be able to produce skillful forecasts that can differentiate between more than two categories.420

However, the two category probabilities are used for real-time forecasts because they are currently421

more skillful.422

Forecast guidance products have been developed at NCEP/CPC using the SubX forecasts for423

500hPa geopotential height, 2m temperature, and precipitation. For temperature and precipita-424

tion, MME bias corrected anomalies and probabilistic guidance products are shown in Figure 11425

(left). The procedure for producing these guidance products is shown schematically in Figure 12.426

NCEP/CPC collects the weekly forecast data from each modeling group every Thursday by 6am427

ET, using the most recently initialized forecast runs available for each model from the prior Friday428

through Wednesday, with the latest initialization from 00 UTC Thursday provided by ECCC-429

GEM. Bias-corrected anomalies are calculated for each model and ensemble member using the re-430

forecast climatologies described in section 3c. From these anomalies, the week 3-4 multi-model431

mean anomalies are produced by averaging each ensemble member from each model, thus in the432

real-time forecasts each ensemble member is given equal weight in calculating the multi-model433

mean (Figure 11, upper left panels); recall that in Section 3b, multi-model results gave each model434
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equal weight. Since some models produce additional ensemble members in real-time (Table 1),435

the SubX real-time forecasts have 79 ensemble members, while the MME re-forecasts described436

in Section 3 typically have 34 ensemble members. Each ensemble member is given equal weight437

in real-time forecast anomalies so that the multi-model anomaly forecasts are consistent with the438

multi-model probability forecasts. A preliminary analysis of multi-model ensemble anomaly cor-439

relations showed that multi-model anomalies that equally weighted ensemble members were more440

skillful than those that equally weighted models (not shown). This suggests that the ensemble441

mean anomalies of models with fewer ensemble members are less skillful, however individual442

ensemble members may be equally skillful. Determining the optimal weighting procedure is an443

active area of research. Probability guidance of above- and below-normal are then derived by444

counting the number of ensemble members from all model runs that exceed or do not exceed445

the model climatological mean. The probabilistic map is produced for the ‘above-only’ category446

(cf. Figure 11) and probabilities of below-normal are inferred to be one minus the probability of447

above-normal.448

Using guidance from SubX and other tools, NCEP/CPC forecasters produce the official maps449

for week 3-4 outlooks. These maps for July 6, 2018 temperature and precipitation show above-450

and below-normal areas consistent with the corresponding probabilities and anomalies from the451

SubX multi-model ensemble, demonstrating the use of SubX in the NCEP/CPC official outlooks452

(Figure 11).453

5. Concluding Remarks454

This paper introduces SubX to the S2S community. SubX is a multi-model R2O project in which455

seven models have produced a suite of historical re-forecasts and also provide weekly real-time456
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forecasts. The re-forecast database has been completed and the real-time forecasts have been op-457

erating for over a year. Both real-time and re-forecasts are publicly available through the IRI Data458

Library. We wish to emphasize that the SubX database is complementary to the WWRP/WCRP459

S2S prediction project database. The inclusion of research and operational models and availability460

of both real-time and retrospective forecasts in SubX provides a unique contribution to community461

efforts in subseasonal predictability and prediction.462

Here we have provided an initial assessment of subseasonal biases and skill for the SubX models463

as well as a demonstration of the SubX contribution to real-time operational predictions. There464

have been few evaluations of model biases for subseasonal timescales. We show that for the SubX465

models, bias patterns over the U.S. are already well established at week 1 and grow to week 4.466

Further research should evaluate the impact of these biases on prediction skill. The SubX MME467

demonstrates skill for week 3-4 predictions of temperature and precipitation in specific regions and468

seasons. This is confirmed using both probabilistic and deterministic skill metrics. On average,469

the MME is more skillful than individual models over North America. We also evaluated the skill470

of MJO and NAO predictions. MJO skill is comparable with most of the WWRP/WCRP S2S471

models. However, we have evaluated only a single metric which is known to capture primarily472

the circulation fields (Straub 2013). The NAO skill is also comparable to other modeling systems473

with the exception of the UKMET Office. Future work should explore the model configuration474

necessary to produce NAO skill consistent with the UKMET Office system. Finally, we have475

demonstrated that SubX can provide useful MME guidance to NCEP/CPC operational products in476

real-time. All seven modeling groups, including research models, have provided SubX forecasts477

each week on time throughout the real-time demonstration period. In addition to the results shown478
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in this paper, many additional images showing model skill and biases are available on the SubX479

website 4.480

The results shown in this paper have only scratched the surface of potential research on subsea-481

sonal predictability and prediction. With the availability of subseasonal re-forecast databases such482

as SubX and WWRP/WCRP S2S, it is now possible for the research community to extensively483

explore the full range of subseasonal predictability, and to develop methodologies for S2S post-484

processing including forecast calibration and multi-model ensembling (e.g. Vigaud et al. (2017a);485

Vigaud et al. (2017b)). The availability of real-time subseasonal forecasts in SubX also enables486

the development of real-time forecast demonstration prototypes for applications use in various487

socio-economic sectors. We encourage the community to utilize the SubX database to these ends.488

Finally, we wish to highlight that the SubX database is also an ideal framework for testing489

model improvements for subseasonal predictions. For example, Sun et al. (2018, manuscript in490

preparation) have already undertaken an effort to test the impact of including more model levels491

to resolve the stratosphere following the SubX re-forecast protocol. This has made it possible492

to compare the results of their model improvements in a prediction framework and against the493

suite other SubX models. Colleagues at NRL are also testing the impact of better resolving the494

stratosphere in their model (N.Barton, personal communication). Additionally, Green et al. (2017)495

and Sun et al. (2018b) have used the SubX framework for testing the impact of a new subgrid-496

scale convection scheme. We encourage future model development efforts to utilize SubX as a497

framework for improving subseasonal predictions.498
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TABLE 1. Summary of models participating in SubX, A=atmosphere, O=Ocean, I=sea ice, and L=land.

Numbers in the ensemble members column apply to re-forecasts and real-time forecasts unless indicated by

brackets [] which indicate a different number of ensemble members used in real-time forecasts than those used

in the re-forecasts.

705

706

707

708

Model Components Ensemble Members Length (Days) Years Reference(s)

NCEP-CFSv2 A,O,I,L 4 45 1999-2016 Saha et al. (2014)

EMC-GEFS A,L 11 [21] 35 1999-2016 Zhou et al. (2016); Zhou et al.
(2017); Zhu et al. (2018)

ECCC-GEM A,L 4 [21] 32 1999-2014 Lin et al. (2016)

GMAO-GEOS5 A,O,I,L 4 45 1999-2015 Koster et al. (2007); Molod et al.
(2012); Reichle and Liu (2014);
Rienecker et al. (2008)

NRL-NESM A,O,I,L 4 45 1999-2016 Hogan et al. (2014); Metzger et al.
(2014)

RSMAS-CCSM4 A,O,I,L 3 [9] 45 1999-2016 Infanti and Kirtman (2016)

ESRL-FIM A,O,I,L 4 32 1999-2016 Sun et al. (2018a); Sun et al.
(2018b)
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TABLE 2. Priority 1 variables: fields required to support Climate Prediction Center operational products

Variable Level Unit Frequency

Geopotential Height 500 hPa m Average of instantaneous values at 0,6,12, 18 UTC

Geopotential Height 200 hPa m Average of instantaneous values at 0,6,12, 18 UTC

Zonal Velocity 850 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Zonal Velocity 200 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Meridional Velocity 850 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Meridional Velocity 200 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Temperature 2m K Daily Average

Precipitation Flux Surface kgm-2s-1 Accumulated every 24 hours

Surface Temperature (SST+Land) Surface K Daily Average

Outgoing Longwave Radiation top of atmosphere Wm-2 Accumulated every 24 hours
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TABLE 3. Priority 2 variables: fields needed to support evaluation of many S2S phenomena for research purposes

Variable Level Unit Frequency

Specific Humidity 850 hPa 1 Daily Average

Vertical Velocity 500 hPa Pas-1 Average of instantaneous values at 0,6,12, 18 UTC

Zonal Velocity 100 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Meridional Velocity 100 hPa ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Zonal Wind 10m m-1 Average of instantaneous values at 0,6,12, 18 UTC

Meridional Wind 10m ms-1 Average of instantaneous values at 0,6,12, 18 UTC

Daily Maximum Temperature 2m K 24hr instantaneous

Daily Minimum Temperature 2m K 24hr instantaneous

Latent Heat Flux sfc Wm-2 Accumulated every 24 hours

Sensible Heat Flux sfc Wm-2 Accumulated every 24 hours

Zonal wind stress sfc Nm-2 Daily Average

Meridional wind stress sfc Nm-2 Daily Average

Mean pressure sea level Pa Average of instantaneous values at 0,6,12, 18 UTC

Snow water equivalent N/A kgm-2 Accumulated every 24 hours

Net Radiation sfc Wm-2 Accumulated every 24 hours

Snow Density N/A kgm-2 Daily Average

Snow Cover N/A percent Daily Average

Vertically integrated soil moisture N/A kgm-2 Daily Average

Sea ice concentration N/A % Daily Average

Convective Available Potential Energy N/A Jkg-1 Daily Average
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FIG. 1. Multi-model biases for 2m temperature (◦C) for week 1 (left), week 4 (middle), and week 4 minus

week 1 (right) for re-forecasts initialized in Dec-Jan-Feb (top row), Mar-Apr-May (second row), Jun-Jul-Aug

(third row), and Sep-Oct-Nov (bottom row). Biases are calculated as model minus verification.
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FIG. 2. Multi-model biases for precipitation (mm day-1) for week 1 (left), week 4 (middle), and week 4

minus week 1(right) for re-forecasts initialized in Dec-Jan-Feb (top row), Mar-Apr-May (second row), Jun-Jul-

Aug (third row), and Sep-Oct-Nov (bottom row). Biases are calculated as model minus verification.
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FIG. 3. Multi-model Ensemble ACC for week-2 (a) 2m temperature and (b) precipitation. ACC is calculated

over re-forecasts with initial conditions for from Dec-Jan-Feb.
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FIG. 4. Multi-model Ensemble ACC for week 3-4 2m temperature over North America. ACC is calculated

over re-forecasts with initial conditions for (a) Dec-Jan-Feb, (b) Mar-Apr-May, (c) Jun-Jul-Aug, and (d) Sep-

Oct-Nov.
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FIG. 5. Multi-model Ensemble ACC for week 3-4 precipitation over North America. ACC is calculated over

re-forecasts with initial conditions for (a) Dec-Jan-Feb, (b) Mar-Apr-May, (c) Jun-Jul-Aug, and (d) Sep-Oct-

Nov.
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FIG. 6. Average week 3-4 ACC for (a) 2m temperature and (b) precipitation over North American domain

shown in Figures 3 and 4 [15◦N-75◦N; 170◦W-55◦W]. ACC is calculated over re-forecasts with initializations

for Sep-Oct-Nov (SON), Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), and Jun-Jul-Aug (JJA).
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FIG. 7. Multi-model RPSS for week 3-4 2m temperature. RPSS is calculated over re-forecasts initialized in

(a) Dec-Jan-Feb, (b) Mar-Apr-May, (c) Jun-Jul-Aug, and (d) Sep-Oct-Nov.
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FIG. 8. Multi-model RPSS for week 3-4 precipitation. RPSS is calculated over re-forecasts initialized in (a)

Dec-Jan-Feb, (b) Mar-Apr-May, (c) Jun-Jul-Aug, and (d) Sep-Oct-Nov initialized forecasts.
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FIG. 9. RMM index skill in terms of ACC (a) and RMSE (b) for Nov-Mar initialized re-forecasts.
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FIG. 10. NAO skill ACC (left) and RMSE (right) for Dec-Feb initialized re-forecasts.
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a)

b)

c) NOAA/CPC Temperature  Outlook

f) NOAA/CPC Precipitation Outlookd)

e)

FIG. 11. SubX real-time multi-model anomaly and probability guidance for (a,b) temperature and (d,e) pre-

cipitation and corresponding CPC official week 3-4 outlook products for (c) temperature and (f) precipitation.

Forecasts were made July 6, 2018. The temperature (b) and precipitation (e) probability maps are for above-

normal categories.
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FIG. 12. Schematic diagram of the CPC procedure for processing SubX model data each week and producing

anomaly and probabilistic maps for week 3-4 outlook guidance.

768

769

51


